
[Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [673]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

 Distributed System with Improved Replication Technique
Lalit Gehlod*

* Department of Computer Engineering, Institute of Engineering and Technology, Indore

Abstract

Distributed system is one of the important backbones of today’s computer systems. One of the major problematic

issues in distributed system is Fault tolerance. Most of the systems which are based on distributed system face faults

in various forms like unavailability, consistency, isolation etc. There are many fault tolerance techniques are

available like check pointing, Replication etc.Both the above mentioned techniques have their own pros and cons.

Replication plays a vital role in fault tolerance. In this work we are maintain replicas of data over different-different

systems so that we can recover our data in case of fault. During Replica placement we assure that some replicas

should be on nearer nodes and some on farther nodes. In this work we have chosen Java RMI to implement the

system. In this work we have added dynamism in the system by adding number of nodes who participate in

distributed system at run time. We can also increase the number of replicas at run time in the distributed system.

Keywords: Fault Tolerance, DS, Replication

Introduction
Systems were connected with each other through

several channels for interchanging data like files or

other data. Replication plays a vital role in fault

tolerance. In this work we are maintain replicas of

data over different-different systems so that we can

recover our data in case of fault. During Replica

placement we assure that some replicas should be on

nearer nodes and some on farther nodes. In this work

we have chosen Java RMI to implement the system.

In this work we have added dynamism in the system

by adding number of nodes who participate in

distributed system at run time. We can also increase

the number of replicas at runtime in the distributed

system. In Distributed computing there is a saying.

First, "Many hands make light work” and “whole are

greater than the sum of its parts” means you can take

a task and break it so that many persons can work on

it simultaneously and the distributed task results are

now recombined to get a whole result easily, that

cannot be achieved by the computers working

alone[1].

The another saying, "The whole is greater than the

sum of its parts" applies to the fact that the

distributed task results are now recombined to get a

whole result easily, that cannot be achieved by the

computers working alone [1].

Main advantages with distributed system are that it

can continue even if any fault occurs in the system

called reliability of the system. Reliability of

distributed system is better than stand alone system.

As we known power of unity always work in system.

When a particular task is done in a group it completes

the task more accurately and more effectively. For

example it is very easy to break a single stick of

wood whereas it is quite difficult to break a bunch of

same stick. In a similar way a distributed system

consists of collection of autonomous computers

connected by a computer network and equipped with

distributed machines. This program enables

computers to coordinate their activities and share

resources of the system hardware, software, and data.

In networking systems, users experience that there

are many machines are present. The working of these

machines is not clear whatever it is doing load

balancing, replications or any other. But in

distributed systems users identify a single and

integrated computing facility, despite of having work

distributed to different systems. Advantages of

distributed systems as applications include:

Massively multiplayer online games, virtual reality

communities, Aircraft controlling machines,

distributed rendering in computer graphics and many

other field [2].

Research activity in fault-tolerant [3] distributed

computing aims to make distributed systems more

trustworthy and enhancing its performance by

handling faults in complex computing environments.

Furthermore, the society is increasingly reliant on

http://www.ijesrt.com/

[Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [674]

well-designed and well-functioning computer

systems, which led to an increasing demand for

dependable systems, and the systems with

quantifiable dependability properties. As accepted by

a lot of, the performance of distributed systems

significantly depends on improving fault tolerant

methods [4]. There are many fault tolerant techniques

designed on software level, each of which has their

own advantages and disadvantages. Some

methodologies used in fault tolerant distributed

system are heartbeat method, rollback technique,

replication, Byzntine [22] faults etc. Many

researchers tell that “replication” can sufficiently

improve performance of distributed computing

system. our focus is mainly on ‘replication

techniques’ and are trying to improve the system

efficiency with the help of ‘replication techniques’ in

distributed systems.

Fault Tolerance Techniques
Performance of distributed system is most important

in many applications and for researchers too.We have

studied so many techniques like Process Level

Redundancy, Fusion Based Technique,

Checkpointing, Replication etc.Out of all we have

focused on replication.

2.1 Replication

Replication is the key to providing high availability,

fault tolerance, and enhanced performance in a

distributed computing system. As companies move

toward systems that are more open and distributed,

replication is becoming increasingly important in the

ability to provide data and services that are current,

correct and available, which is a key factor in

maintaining a competitive advantage over rivals.It

add redundancy in system and we can recover from

redundant data in case of failure as shown in fig. 1

Fig 1: Replication Based Technique

There are various issues in replication base fault

tolerance technique. Important issues [13] in

replication based techniques are consistency, degree

of replica etc.

2.1.1 Consistency

Consistency is important construct. Because success

of replication is totally based on redundant data so it

can provide contradictory data at the time of action.

For instance, a client is accessing the facts from a

replicated node which is being updated by the server

then; it can access not consistent data. A replication

procedure must ensure the consistency among all

replicas of the same thing. Consistency is ensured by

some criterion. Many consistency criteria have been

clear in the literature; linearizability [19], sequential

consistency and causal consistency [20] etc. In all

above cases, an operation is performed on the most

recent state of the object. However consistency

criteria differ in the definition of the most recent

state. Primary-backup replication technique and

active replication technique ensure consistency by

linearizability. Both linearizability and sequential

consistency define strong consistency criterion,

whereas causal consistency defines a weak

consistency criterion. Sequential consistency

informally states that a multiprocessor program

executes correctly if its result could have been

produced by executing that program on single

processor system. In order to have consistency an

efficient strategy is required. Passive strategy and

active strategy are main strategies. In a passive

replication, only one principal execute requests and

multicasts state changes to all replicas. This scheme

avoids duplicate computation of requests. It copes

with non-deterministic service behavior. In active

replica, client request is multicasts to all replicas.

This means all replicas execute the request

individually. In this way

Active replica takes less network resources than

sending update. Active replica response to a fault is

faster than passive. However, replica consistency

usually requires deterministic replica behavior

[10].Researcher proposed an algorithm that uses both

active and passive strategies to implement optimistic

replication protocol [11]. Researcher also proposed a

simple protocol by combining the token with cache.

This gives benefits of token as well as cache

[12].There is still need of more simple, adaptive and

practical replication protocol with adequate and

sufficient ensured consistency.

2.1.2 Degree of Replica

Number of replica is called as a degree of replication.

In order to replicate an item a replication protocol is

used [13]. Primary-backup replication [27], voting

[23], and primary-per partition protocol [24] are

some of the replication protocol. A replication

protocol must be realistic and simple. The protocol

must offer rigorously-proven yet simply-stated

steadiness guarantee with a reasonable performance.

Replication

Protocol

Replica

manager

Repli

ca 1

Consistency

Mgmt

Repli

ca 1

Repli

ca 1

http://www.ijesrt.com/

[Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [675]

Niobe is such protocol purposed by researcher

[25].Number of replicas must be sufficient. Large

numbers of replicas will increase the cost of

maintaining the consistency. Less number of replicas

will concern the performance, scalability and

multiple fault tolerance capability. Therefore, rational

number replicas must be guess as per system

arrangement and load. Researcher projected adaptive

replicas creation algorithm [26].There is further

research scope to develop improved algorithm to

maintain a rational replica number. Replica on

demand is a feature that can be implemented to make

more adaptive, flexible and vibrant. There is research

scope to further improve protocols to achieve

replication proficiently. There are some crucial

requirements with replication protocol. These crucial

necessities are sustain for a flexible number of

replicas, firm consistency in the occurrence of

network, disk, and machine failures and efficient

common cases read and write operations deficient

requiring potentially costly two or three-phase

commit protocols.

2.2 Checkpointing

Checkpointing and rollback-recovery are well-known

techniques that allow processes to make progress in

spite of failuresi2. The failures under consideration

are tran- sient problems such as hardware errors and

transaction aborts, i.e., those that are unlikely to recur

when a process restarts. With this scheme, a process

takes a checkpoint from time to time by saving its

state on stable storage9 When a failure occurs, the

process rolls back to its most recent checkpoint,

assumes[25]

Checkpointing is an important feature in distributed

computing systems. It gives fault tolerance without

requiring additional efforts from the programmer. A

checkpoint is a snapshot of the current state of a

process. It saves enough information in non-volatile

stable storage such that, if the contents of the volatile

storage are lost due to process failure, one can

reconstruct the process state from the information

saved in the non-volatile stable storage. This strategy

usually works well in uniprocessor systems. The

reconstruction of a distributed system with multiple

processes is, however, not easy. The action of the

receiver of a message depends on the content of the

message. If the processes communicate with each

other through messages, rolling back a process may

cause some inconsistency. In the time since its last

checkpoint, a process may have sent some messages.

If it is rolled back and restarted from the point of its

last checkpoint, it may create orphan messages, i.e.,

messages whose receive events are recorded in the

states of the destination processes but the send events

are lost. Similarly, messages received during the

rolled back period, may also cause problem. Their

sending processes will have no idea that these

messages are to be sent again. Such messages, whose

send events are recorded in the state of the sender

process but the receive events are lost, are called

missing messages. A set of checkpoints, with one

checkpoint for every process, is said to be Consistent

Global checkpointing State (CGS), if it does not

contain any orphan message or missing message.

However, generation of missing messages may be

acceptable, if messages are logged by sender. In a

distributed system, each process has to take

checkpoints periodically on non-volatile stable

storage. In case of a failure, the system rolls back to a

consistent set of checkpoints. If all the processes take

checkpoints at the same time instant, the set of

checkpoints would be consistent. But since globally

synchronized clocks are very difficult to implement,

processes may take checkpoints within an interval. In

order to achieve synchronization, sometimes

processes take temporary checkpoints. When all

processes agree, these checkpoints are made

permanent. There are several schemes for

checkpointing and rollback recovery.

2.3.1 Random Node Selection

The Random node selection algorithm [22] is given

by John Paul Walters and Vipin Choudhary. It is

implemented by authors in LAM/MPI environment.

The goal is to randomly generate r replicas per node,

subject to the following constraints:

1. Self replication of node is not allowed

2. A node should replicate to exactly r nodes, each of

which may only store r replicas.

3. Replica of each of a node should be unique.

 The key to the algorithm is to begin with an initial

state in the form of a table which contains the

information about the nodes on which data of a

particular node is replicated. The initial state satisfies

the above replica constraints, and incrementally

refines the replica choices through swapping. After

this a circular shift operation is used to ensure the

final state of replicas should be valid according to the

constraints. This means that each column should be

circular-shifted such that no two rows contain

duplicate replicas and no row should be assigned

itself.

 Once the early state is attained, the algorithm

proceeds through each node and each replica and

swaps replicas with randomly chosen nodes. Because

algorithm started the swapping with a convincing

initial state, it is only needed to keep the constraints

while introducing an element of randomness into the

http://www.ijesrt.com/

[Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [676]

replica production. Two nodes may swap replicas as

long as neither node already contains a copy of their

potential replicas, and provided that the swap would

not result in either node replicating to itself. Next, the

candidate node is generated that may later be used for

swapping. The only constraint that is enforced is that

the node should not attempt to swap with itself. Once

a valid replica candidate has been generated, it is

simply checked to ensure that swapping would

maintain a valid state. Finally, the actual replica swap

is performed after many confirmations.

RMI
The RMI (Remote Method Invocation) is an API that

provides a mechanism to create distributed

application in java. The RMI allows an object to

invoke methods on an object running in another

JVM.The RMI provides remote communication

between the applications using two objects stub and

skeleton. stub and skeleton-

The stub is an object, acts as a gateway for the client

side. All the outgoing requests are routed through it.

It resides at the client side and represents the remote

object. When the caller invokes method on the stub

object, it does the following tasks:

It initiates a connection with remote Virtual Machine

(JVM),

It writes and transmits (marshals) the parameters to

the remote Virtual Machine (JVM),

It waits for the result

It reads (unmarshals) the return value or exception,

and

It finally, returns the value to the caller.

The skeleton is an object, acts as a gateway for the

server side object. All the incoming requests are

routed through it. When the skeleton receives the

incoming request, it does the following tasks:

It reads the parameter for the remote method

It invokes the method on the actual remote object,

and

It writes and transmits (marshals) the result to the

caller. As shown in figure 2

Fig. 2

3.1 Overview:

RMI allows you to identify procedures [27] on

objects that reside on other effective machine and

treat them as if they were on the local machine.

Perception of RMI is very easy there is a client and a

server: the server has the method which is to be

called remotely by a client application. There is also

a record known as RMI registry which is used to

handle all remote methods. RMI service provides a

new name to remote method and does its entry in

RMI registry by using binding method. Once the

client has this reference, it can make remote method

calls with parameters and return values as if the

object (service) were to be on the local host. Java

RMI is comprised of three layers [5] that support the

interface.

The first layer is the Stub/Skeleton Layer. This layer

is responsible for managing the remote object

interface between the client and server. The second

layer is the Remote Reference Layer (RRL). This

layer is responsible for managing the "liveliness" of

the remote objects. It also manages the

communication between the client/server and virtual

machine s, (e.g., threading, garbage collection, etc.)

for remote objects. The third layer is the transport

layer. This is the actual network/communication layer

that is used to send the information between the client

and server over the wire. It is currently TCP/IP based.

If talked upon RPC, it is a UDP-based protocol which

is fast but is stateless and can lose packets. TCP is a

higher-level protocol that manages state and error

correction automatically, but it is correspondingly

slower than UDP.

Proposed Work
The random node selection algorithm [5] is very

well-organized for replication and authors worked

very well and implemented it in LAM/MPI settings.

We have taken the same algorithm and tried to

develop it in Java RMI technology. There are many

http://www.ijesrt.com/

[Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [677]

tools exists to build distributed environment but we

employed RMI because of its recognizable

environment and it is presented as competent tools

for distributed system by Jerzy Brzezinski and

Cezary Sobaniec in [6].

The random node selection algorithm conversed only

about replication by providing the addresses of the

nodes where replicated data to be saved. But it didn’t

says regarding what to do if there is a condition of

escalating fault tolerance competence by escalating

number of nodes or by increasing number of replicas.

Thus, we modified and executed this algorithm to

handle these vital issues. The issues are as follows:

There are two possible cases in case one is when new

node desired to be inserted in an already developed

distributed structure and case two when number of

replicas required to be increased in an previously

developed distributed system to improve its fault

tolerance capability.

We designed the new algorithm to touch these issues

and got implemented it in RMI. Our execution

contains the following modules:

1. A dedicated Coordinator that have algorithm

implementation.

2. The Client environment that required to converse

with coordinator to concern about the replica

placement.

3. All the systems in the network required to

converse each other to discover or place their replicas

over the network.

This new program has the facility to satisfy the desire

of escalating fault tolerance. It provides users to

boost the no of nodes or replicas after initiating the

program. After final implementation of the algorithm

at the Coordinator side, all clients receive a file

including IP addresses of the nodes selected for the

replication of their data. One program has also been

developed for communication of the clients. In it,

clients lastly replicate their data to the addresses

received in the file by the coordinator. With the use

of this algorithm checkpoints are replicated and fault

tolerance is attained

Conclusion
We intensely examine the Algorithm, and find out

some limitation in that, and then we redesigned the

algorithm including various points in such a way that

the on the whole complexity of the algorithm is less

as that of earlier.We have proposed an better method

to ensure the consistency by simulating the

distributed environment using java RMI. This

algorithm is very simple and guarantees the

consistency in a very simple manner. Check pointing

operating cost is reduced by storing the checkpoints

on local hard disk instead of SNA (Storage Network

Area) or DFS (Distributed File System) following the

postulations specified by John Paul Walters. This

work will absolutely work as a reference for

researcher and practitioner to design and extend high

performance multiple fault tolerance.

REFERENCES
1. http://www.mithral.com/projects/cosm/ch-

02.html

2. http://encyclopedia2.thefreedictionary.com/

Distributed+system

3. http://www.javatpoint.com/RMI

4. Jalote, P. Fault Tolerance in Distributed

Systems, (Prentice Hall, 1994).

5. http://www.edm2.com/0601/rmi1.html

6. A Concept of Replicated Remote Method

Invocation Jerzy Brzezinski and Cezary

Sobaniec, Institute of Computing Science,

Poznan University of Technology, Poland

{Jerzy.Brzezinski,

Cezary.Sobaniec}@cs.put.poznan.pl.

7. M. Wiesmann, F. Pedone, A. Schiper, B.

Kemme, G. Alonso,“ Understanding

Replication in Databases and Distributed

Systems,” Research supported by

EPFLETHZ DRAGON project and OFES).

8. M. Herlihy and J. Wing. “Linearizability: a

correctness condition for concurrent

objects,” ACM Trans. on Progr. Languages

and Syst., 12(3):463-492, 1990. (IJIDCS)

International Journal on Internet and

Distributed Computing Systems. Vol: 1 No:

1, 39

9. M. Ahamad, P.W. Hutto, G. Neiger, J.E.

Burns, and P. Kohli., “Causal

Memory:Definitions, implementations and

Programming,” TR GIT-CC-93/55, Georgia

Institute of Technology, July 94.

10. H.P. Reiser, M.J. Danel, and F.J. Hauck., “

A flexible replication framework for

scalable andreliable .net services.,” In Proc.

of the IADIS Int. Conf. on Applied

Computing, volume1, pages 161–169, 2005.

11. A. Kale, U. Bharambe, “Highly available

fault tolerant distributed computing using

reflection and replication,” Proceedings of

the International Conference on Advances in

Computing, Communication and Control,

Mumbai, India Pages: 251-256 ,: 2009

12. X. China, “Token-Based Sequential

Consistency in Asynchronous Distributed

System ,” 17 th Internaional Conference on

Advanced Information Networking and

http://www.ijesrt.com/
http://www.mithral.com/projects/cosm/ch-02.html
http://www.mithral.com/projects/cosm/ch-02.html
http://encyclopedia2.thefreedictionary.com/Distributed+system
http://encyclopedia2.thefreedictionary.com/Distributed+system
http://www.javatpoint.com/RMI
http://www.edm2.com/0601/rmi1.html
mailto:Cezary.Sobaniec%7D@cs.put.poznan.pl

[Gehlod,1(10): December, 2012] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

 [678]

Applications (AINA'03),March 27-29,

ISBN: 0-7695- 1906-7

13. Checkpointing and Rollback-Recovery for

Distributed Systems by Richard KooD.K.

14. Gifford, “Weighted voting for replicated

data,” InSOSP ’79: Proc. of the seventh

ACM symposium on Operating systems

principles, pages 150–162, 1979.

15. http://www.isical.ac.in

16. J Maccormick1, C Thekkath, M.Jager,K.

Roomp, and L. Peterson , “Niobe: A

Practical Replication Protocol.” ACM

Journal Name,

17. Cao Huaihu, Zhu Jianming, “An Adaptive

Replicas Creation Algorithm with Fault

Tolerance in the Distributed Storage

Network” 2008 IEEE.

18. N. Budhiraja, K. Marzullo, F.B. Schneider,

and S. Toueg. The Primary-Backup

Approach. In Sape Mullender, editor,

Distributed Systems, pages 199-216. ACM

Press, 1993.

19. V. Agarwal, Fault Tolerance in Distributed

Systems, Institute of Technology Kanpur,

www.cse.iitk.ac.in/report-repository, 2004. ,

20. H. Jung, D. Shin, H. Kim, and Heon Y. Lee,

“Design and Implementation of Multiple

FaultTolerant MPI over Myrinet (M3) ,”

SC|05 Nov 1218,2005, Seattle, Washington,

USA Copyright 2005 ACM.

21. M. Elnozahy, L. Alvisi, Y. M. Wang, and D.

B. Johnson. A survey of rollback-recovery

protocols in message passing systems.

Technical Report CMU-CS-96-81, School

of Computer Science, Carnegie Mellon

University, Pittsburgh, PA, USA, October

1996.

22. J. Walters and V. Chaudhary,” Replication-

Based Fault Tolerance for MPI

Applications,” Ieee Transactions On Parallel

And Distributed Systems, Vol. 20, No. 7,

July 2009.

23. M Chtepen, F.. Claeys, B. Dhoedt, , and P.

Vanrolleghem,” Adaptive Task

Checkpointing and Replication:Toward

Efficient Fault-Tolerant Grids”, IEE

Transactions on Parallel and Distributed

Systems, Vol. 20, No. 2, Feb 2009

24. http://www.scpe.org

Author Bibliography

Lalit Gehlod

Author has been

working as a lecturer in

computer engineering

department at

IET,DAVV

http://www.ijesrt.com/
http://www.isical.ac.in/
http://www.scpe.org/

